# 知識(shí)關(guān)聯(lián)示例代碼from sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.metrics.pairwise import cosine_similaritydef cross_media_link(document, max_links=5): vectorizer = TfidfVectorizer(stop_words='chinese') tfidf_matrix = vectorizer.fit_transform([doc.text]+archive_docs) similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:]) related_indices = similarities.argsort()[0][-max_links:][::-1] return [(archive_docs[i].metadata, similarities[0][i]) for i in related_indices]
實(shí)施建議:
通過此方案的實(shí)施,貴機(jī)構(gòu)的媒資將實(shí)現(xiàn)從"檔案存儲(chǔ)"到"認(rèn)知引擎"的質(zhì)變,構(gòu)建起面向媒體融合時(shí)代的智能生產(chǎn)能力體系。
感謝您的支持,請(qǐng)隨意打賞。您的贊賞將鼓勵(lì)我繼續(xù)創(chuàng)作!